
___ Software Engineering Institute

co ~ Support Materials for

__ Formal Specification of Software

0 Support Materials SEI-SM-8-1 .0 DT{C

C

* 91-00921

1)I UI~r id 9. 5 31 002

Support Materials

for

Formal Specification of Software

SEI Support Materials SEI-SM-8-1.0

October 1987

Edited by

Alfs Berztiss .. i- o ,
University of Pittsburgh

A-n;. : l tY 0cdc!
Ds I Pe _l_,__

Carnegie Mellon University

2 Software Engineering Institute

This work was sponsored by the U.S. Department of Defense.

Draft For Public Review

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

JO NS HERMAN, Capt. USAF
/ SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel. DoD contractors and potential contractors, and other U S. Government
agency personnel and their contractors. T " a cony, plese con".ct !TIC di-c c!y: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Contents

Examples of Predicative Specifications I

The SF (Set-Function) Methodology 11

SF Specification: Boat Hire 18

SF Specification: A Library System 26

SF Specification: An Elevator Controller 33

The Specification Process 43

Formal Specification Courses 61

SEI-SM-8-1.0 Draft For Public Review

Formal Specification of Software

Support Materials Revision History

Version 1.0 (October 1987) Draft for public review

Support Materials Formal Specification of Software

Examples of Predicative Specifications

Alfs Berztiss
University of Pittsburgh

This section includes several annotated examples of specifications written in predicate calculus notation. Some
of the details are left as exercises to the reader.

0

0

SEI-SM-8-1.0 Draft For Public Review 1

EXAMPLES OF PREDICATIVE SPECIFICATIONS

SMALLER EXAMPILES

The specification of a data transformer generally consists of tvwc predicate,. One

describes the output independently of the input: the other relates the output to the input.

For example. to specify sorting. we have to indicate both that the output is in fact sorted.

and that the output is a permutation of the input:

Input: X[1..n];

Output: X' (1..n]:

Alop(A: IX'[iI < X'[i+ 11 1 < i < n D:

permutation(X, X').

Notation: for any associative and commutative operator op. Allop(op; set) indicates a distri-

butive application of the operator over set. For example, if S = {5. 12. 141. then .-llA1p(-t-: S)

= 5+12+14 = 31. The expression in A given above is equivalent to Vi: I -< i <n:

X[i I<X'[i +1]. Often the set is defined by the use of a defining predicate: {s I P(s)). read

as "the set of all elements s such that the predicate P is true for s." In our example the set

consists of all statements X'[i] < X'[i + I] such that 1 -< i < n. Note that Allop(V:

nullset) = false and that Allop(A; nuilset) = true.

Suppose that we wanted a function that returned the quotient q and remainder r of

the division of the nonnegative integer x by the positive integer y. Here the two com-

ponents of the output are related to the input by the expression

(x =y Xq +r) A (O<r <y).

Similarly we can specify a function that inverts a matrix A by relating its output B to A

and to the identity matrix 1: AB = 1.

2

Another simple specification is that of the greatest common divisor. Here we define

divides (i: Cardinal: x: Natural) = Allop(V: {i X q = x I 0<q <x });

gcd (g : Cardinal ; x, y: Natural) = divides (g , x) A divides (g ,)

A not(Allop (V. (divides (i. x) A divides (i . y) I g <i <min (x . y

A function can be defined in terms of gcd:

fgcd (x . y: Natural) = getelernent ({g I gcd (g . x , y)).

where getelement is a function that extracts an element from a set (here the set consists of a

single element, namely the greatest common divisor of x and y).

Instead of defining gcd in terms of divides, we can specify it by means of three

axioms:

gcd (x . x . 0):

gcd (g . x. y) = gcd (g , x +y. y

gcd (g. x. y) = gcd (g . y . x).

In mathematical language, we have here a theory of the greatest common divisor. From

these axioms, together with the relation

x =y Xdiv(x.y) + rem (x,y),

can derive the predicative specification

y > 0) gcd(g,x,y)=gcd(g,y.rem(xy))),

which can serve as a basis for an implementation of the gcd function.

A TEXT FORMATTER

The text formatter is one of the problems selected for study at the Fourth Interna-

tional Workshop on Software Specification and Design. Here the input is a string over the

alphabet CH. and this string is to be split into lines. The input consists of words separated

by sequences of break characters, namely sequences of blanks (BK) and linefeeds (LF). Let

3

BC = IBK. LF}. Then a word is a sequence of characters from SC = CH - BC such that the

character to the left of this sequence (if any) and the character to the right of the sequence

(if any) belong to BC. The first word of the input may be preceded by characters from BC.

and characters from BC may follow the last word of the input.

The output is to contain precisely the words of the input in precisely the order that

they have in the input. The length of an output line is not to exceed the value IAtA/,. 11

the input contains a word that consists of more than maxpos characters, then the entire out-

put is to be just the one single character BK. The first word of the output is not to be pre-

ceded by any characters from BC. and the last word is not to be followed by any such char-

acters. The objective is to minimize the number of output lines. This objective is achieved

if the output lines are built up in the order they have in the output. and for every line an

attempt is made to pack as much of the remaining input into this line as the line can take.

However, a specification is not to show bias toward a particular implementation. Therefore

the description of the output will be totally declarative. This is particularly important

here because the number of significantly different reasonable implementations is quite large.

We denote a string by S(1)S(2)...S(N). where length(S) = N. Then let the input string

be B(1)B(2)...B(length(B)), and the output string C(1)C(2)...C(length(C)). There are two

parts to the specification. The first part consists of predicates that we consider of

sufficiently general interest to be part of the data type of strings of words. The other part

consists of predicates specific to this application.

Three of our predicates belong to the data type of strings of words: word(S, i, j) is

true if the character sequence S(i)...S(j) defines a word; wordnnumber(S, k, i, j) is true if

S(i)...S(j) defines the kth word of S: word'count(S, k) is true if S contains k words.

word (S: String : i , j: 1..length (S)) =

A (i ;e 1))-* member(S(i-1).BC)

A (0 elength(S)) -- member(S(j+l).BC)

A Allop (A; nember (S (k). SC) I i 4 k <) j}

4

word -number (S : String: k . i j : Cardinal) =

word (S. i j)

A (k = 1) Allop(/; Imember(S(t).BC) 1< t <i H

/ (k > 1) -Allop(V; iword -number(S.k-lu. v i

Allop (A: -member (S (t). BC) v <t <i

,member (u .Cardinal) A member (v. Cardina")}).

word -count (S : String; k: Cardinal) =

(k = 0) -* AUop(A; {member(S(t). BC)I I <t Klength (S)

A (k > O) o Allop(V.1word'number(S.k.u.v)A

Allop(A: {member(S(t). BC) 1 v <t (length (S)})

I member (u , Cardinal) A member (v . Cardinal)}:

Let us examine the predicate word in some detail, The four conjuncts in its definition

establish. respectively, that limits i and j are properly related, that S(i)...S(j) either starts

at the left boundary of S or has a break character preceding it. that S(i)...S(j) either ends at

. the right boundary of S or has a break character following it. and that no characters in

S(i)...S(j) are break characters. In the definition of word-number the first conjunct identifies

the character sequence defineu by i and j as a word. Then it is asserted that all characters

preceding the first word are break characters. The sequence number of subsequent words is

established recursively: it is asserted that there exist character positions u and v that define

word k-1. and that all characters betw~een the end of this word and word k are break char-

acters. The interpretation of the definition of word-count is left as an exercise.

The next set of predicates relates to the application. Predicate agrees matches up the

output words with the input words, and predicate special case determines whether or not

the input contains any word that is too long. Predicates breaks-ok and lines-ok relate to the

output: breaks'ok establishes that there are no leading or trailing break characters. and that

there is precisely one break character between each pair of words: lines-ok establishes the

proper placement of linefeeds.

5

agrees (B. C: String)

Allop (N: Iword -count (B , k) tA wr, "count (C , k)/\

Allop (A: (

Allop (V: (word -nunmber (B , t , i j) A word -number (C . v)

j-i =v-u A

Allop(A :B(i +q) = C(u+q) ! O<:q -<j-i l)

I subset (i, j, u. v }. Cardinal)})
-,t <, k)

I member (k , Cardinal)):

breaks ok (C: String) =

not(member (C (1). BC))

A not(member (C (length kC /) BC))

A Allop (A: (member (C (j). BC) - not(member (C (j +1), BC))

I l< j <length(C)D:

lines "ok (C: String) =

Allop(A {C(i) LF I 1 <i <length (C)}) - length (C)<maxpos

A Allop (A: C (i)=LF --

(length (C)-i -<maxpos V Allop(V I C (j)=LF I i < j <,maxpos +i +1I)) A

Allop (V ; (word (C. i + 1. k) A i < maxpos) k > maxpos A i > maxpos-

Allop(V: IC (q)=LF A i-q-1 <maxpos A k-q >maxpos

1 q<i })

i <k <length (C)})

1 <i <length (C)D:

special -case (B: String) =

Allop(V - word (B i j () I (1(i, j -length (B))A j-i >'maxpos):

conversion "ok (B . C: String) =

special -case (B) o (length (C)=1 A C (1)=BK)

A not(special case (B)) - (agrees (B, C) A breaks ok (C) A lines ok (C));

Predicate agrees asserts that strings B and C contain the same number of words. that

corresponding words in B and C contain the same number of characters, and that

corresponding characters are equal.

6

The definition of lines-ok is the most difficult to interpret. If the output string C con-. tains no linefeeds. then it occupies just one line. and Iength(C) ma\ noi exceed maxpw. It C

contains more than one line. then for every linefeed in C it has te he eZtahlished that the

end of the string or another linefeed is not too far away on the right. F-urther. if this is the

first hneteed in C. then it has to be sho\kn that the lenth ol the substring betveen Ctl)

,nm, the end of the irt A ,ord zhat fkillovws the linefeed exceedr,,~. p .i er',isethe length

of this substring is measured from the preceding linefeed.

The specification of the text formatter was very difficult to write, and it is difficult to

interpret. Moreover, one has to be careful to make the specification complete. For example.

the assertion j -i =v -u in predicate agrees is a later addition. Without it the strings -This

man is my husband" and "This maniac is my husband" would be found to agree.

TWO-WAY MERGE

Consider input streams of records defined by the folloving key sequences.

A: 5 7 3 12 57 32 17 19 27 18 43 15

B: 2 9 11 8 15 30 42 20 35

Runs from the input streams are merged to produce output runs. Thus (5.7) and (2.9.11)

yield (2.5.7.9.11): (3.12.57) and (8.15.30.42) yield (3.8.12.15.30.42.57): (32) and (20.35)

yield (20.32.35). The merged runs go alternately into output streams C and D. At this

point input stream B has been exhausted. but three runs still remain in stream A. The first

and third go into D. the second into C. The output streams are

C: 2 5 7 9 11 20 32 35 18 43

D: 3 8 12 15 30 42 57 17 19 27 15

The two-way merge is defined in terms of the following predicates.

7

run (A ;i: j)Allop (A:1 4'[k] <A A[k+1] 1 i <k < j})

Si>j---*A[iI<A[i-1]

A j<n A[j] <A[j+1;

runnumber (A. k . i. j) = run (A . i. j)

Sk =1 -*i =1

A k >1 Allop(V;{runnumber(A .k-l,u.i--1) 1 -<u<i});

runcount (A .k)(k = 0) null (A) A

(k > 0)-* Allop(A; {runnumber(A .k.u.n) I l <u n):

In our example above, there should be three runs on C. However. if we apply predi-

cate runcount to C, we find that k is 2. i.e.. the runs (2.5.7,9.11) and (20.32.35) have

coalesced into a single run. This worsens matters to the extent that we need a complicated

separate predicate to define output "runs".

outrun (D. k . i. j) =

not(Allop (V: {runnumber (A . k x2. u , v) I v <size (A) A u <v))) --

A lup(V: runnumber (B , k x2. s, t)A D [i..j] = B[s..t]I t <size (B)A s <t)

A not(Allop (V; {runnumber (B. k x2. u, v) I v <size (B) A u <v))

Allop(V j runnumber (A , k x2, s. t) A D[i..j] = A [s..t] I t <size (A) A s <t)

A Allop(V {runnumber(AkX2,uv)Arunnumber(Bkx2,s,t)

I v K(size (A)A u Kv A t <size(B)A s <t)
, ttop (V: imerge (D [i..j], A [u..v].B [3..t])

I v <size (A) A u -<v A t size (B) A s <,t):

outok(D.k) = Alop(V; {outrun(D.k .i. j) I 1 -< i. j -<size(D)}):

Analogous definitions can be written for C. The definition of predicate merge is left as

an exercise. The two-way merge itself may now be specified.

two way -merge (A . B. C. D) =

Atlop (A: (outok (C i) (1 < i (< div (max (fruncount (A), fruncount (B))+ 1, 2)1)

A Altop (A: {outok (D i) I 1 < i < div (max (fruncount (A). fruncount (B)). 2)1):

where

8

fruncount (A) = getelemenz ({k I runcount (A .)}):

Sorting by the two-way merge is accomplished by applying the operation specified by

predicate two-way merge first to A and B, then to C and D. then to A and B again, and so

forth until one of the output streams is empty. However. the predicative specification is

very complicated, and it may be worthwhile to try a different approach.

We propose a generator that delivers the next value of a data stream each time it is

invoked, and further propose that tags be associated with the values delivered by the gen-

erator. There are to be three tag values: N(ormal). H(old). and F(inished). The tag value is

H after the generator has delivered the last item of a run. unless this is the last item of the

entire input stream, in which case the value is F. Otherwise the value is N. Let us now

assume that the generator has state. Then the behavior of the generator can be described in

terms of state transitions.

N Stay in state N. or change to H or F. If new state is N. advance to next item in input
stream.

H Change state to N, advance to next item in input stream.

F Stay in state F.

The permissible state transitions are shown in the diagram below. The node representing

state N is doubly circled because the generator starts in this state (unless the input stream

is empty, in which case it starts in state F).

9

The tag values make it easy to specify a program that accepts data from the two input

streams and moves these data into the two output streams. We assume that the input from

the generator over .4 is in location Aiva!. and the input from the generator over B in Bval.

Each record is assumed to contain a field key.

Tag-action table for a two-way merge

AB Action

NN If Aval < Bval then output Aval and call generator over A, else output Bval and call

generator over B

NH Output Aval and call generator over A

NF Output Aval and call generator over A

HN Output Bva! and call generator over B

HH Call generator over A and B; switch output streams

HF Call generator over .4: switch output streams

FN Output Bval and call generator over B

FH Call generator over B" s'. itch output streams

FF HALT

The main point is that the definition of the generator and the tag-action table consti-

tute a full specification of the two-way merge. The specification is abstract in the sense that

it is independent of the nature of the input streams (files, linear arrays, instances of some

other structure). Moreover, the specification easily generalizes to a three-way or a four-

way merge. Only the table that specifies the merge needs to be changed (to one with 27 or

81 entries, respectively). This table translates immediately into a program composed of

nested case statements.

10

Support Materals Formal Specification of Software

The SF (Set-Function) Methodology

Alfs Berztiss
University of Pittsburgh

An overview of the set-function methodology is given. This should be read before the examples that follow in
this collection. The discussion includes advice about the construction of specifications as well as a description
of the properties of the resulting products.

SEI-SM-8-1.0 Draft For Public Review 11

THE SF (SET-FUNCTION) METHIODOLOGY

-A specification methodolog\ for information-control s';tem should have a sound

theoretica] base. and it should be :,Nnistent wvith the approaLhes used in the specification of

other software elements. The SF methodology has both these properties. It is based on sets

and functions, which are well understood mathematical concepts. Further, since the essence

of data abstraction in general is that data types are defined in terms of sets and functions.

SF is consistent vxith the general principles of data abstraction. Moreover. because an SF

data type and the events associated with it define each other, the specification is self-

contained. The SF methodology has been used to write the specifications of quite a number

of software systems, among others the IFIP Working Conference example. which can be

regarded as a standard benchmark. and a system for handling bank accounts. Note. ho\w-

ever. that the IFIP Working Conference example was xritten while SF was still being

developed, and has the serious flaw of not being modularized.

An SF specification consists of one or more segments. Each segment has three com-

ponents:

* a schema definition.

* specifications of events,

* a responder that consists of transactions.

The schema definition identifies a set as being the primary set of interest for the seg-

ment. e.g.. a set of bank accounts or a set of library books or a set of persons. In addition to

the primary set there may be secondary sets. which for the most part merely provide a

range for a function. For example, in a case study discussed below, library books are

tagged with indicators of their subject matter. These indicators are defined as a secondary

set. The schema definition also defines a set of functions (finite maps). which. for the most

12

part. have the primary set of interest for their domain. Examples of functions for bank

. accounts: balance in an account, overdraft limit, transactions for the current month (a set-

valued function). Some functions have a null domain--they represent properties that per-

tain to the entire segment. Constant functions for the bank accounts: interest rate. number

of transactions for which the bank does not charge, the charge I or each excess transaction.

Some functions are defined Junctions. They can be defined in term." of ether f unction.".

For example. we could have a predicate referees such that reJerees(r, p) is true if referee r

has been assigned as a referee to paper p. Then the function refs-of paper, which is to map

from the set of papers to the power set of the set of referees, i.e., which is to return the set

of the referees of a paper, can be defined in terms of the predicate referees:

refs -of -paper (x) = Iy ; referees (y, x

Functions that are not defined are called basic functions.

The specification of events consists of preconditions and postconditions. Preconditions

determine under what circumstances an event may take place. They serve as a check on the

feasibility of input values, and embody consistency criteria for the data base of the infor-

mation system. Postconditions are subdivided into setconditions, mapconditions, and

sigconditions. Setconditions and mapconditions indicate the changes that sets and maps

undergo in consequence of an event taking place. Sigconditions send signals to the

responder in the form of raised flags.

Our example of an event assigns a referee to a paper. The preconditions test that the

argument p does indeed belong to the set of submitted papers S. and that ref is an active

referee. The prefix R indicates that active has been defined in the segment whose primary

data set is R (i.e.. the set of referees): similarly for prefixes CO (conference organization)

and P (persons). The other preconditions test that the number of papers assigned to ref

does not exceed a limit, that ref does not belong to the same organization as any of the. authors of p. and that the number of referees for the paper does not exceed a limit. The

mapcondition adjusts predicate referees. Primed entities refer to values after the event,

13

such as the primed referees here. Note very carefully that postconditions are assertions

rather than assignments. The operational interpretation of a postcondition: the minimal

modification of the data base that makes the assertion hold. The sigc,-nditions set flags: flag

paperzto-ref is to initiate the actual sending out of the paper to the referee. flag find-rels

remains on as long as the limit on the number of refereeS has not heen reached lor this

paper.

EVENT Assign'referee-to-paper(p. ref):

PRECONDITIONS- member (p. S):

R. active (ref):

ref -paper -count (ref) < CO- ref -paper -limit

Allop (A; {not(P. affiliation (ref)=P. affiliation (x)) I

member (x . authors (p)) }:

card (refs -of -paper (p)) < CO. ref -number;

MAPCONDITIONS- referees '(p, ref) = true;

SIGCONDITIONS- (paper ~toref (p , ref))ON:

card (refs -of ~paper '(p))=CO. ref -number

(find -refs (p))OfF:

ENDEVENT;

Let us now look again at defined functions. Defined functions have two purposes.

First, they may be required in the specification itself, as is rels ofpaper in the specification

of our event Assign-referee-to-paper. Second. every query can be regarded as no more than

a request for the evaluation of a function. We can anticipate some queries, and the answer

to an anticipated query can be predefined: if it is the -value of a basic function, nothing

needs to be done; otherwise a defined function that will provide an answer to the query is

introduced in the schema definition.

In the SF information base all persistent data objects belong to sets and maps. The

sets are arranged in hierarchies, and SF provides multiple inheritance. Multiple inheritance

can be of two kinds. First. an object of type X can inherit properties of both a type Y and

another type Z. Second. some objects of type X may inherit the properties of type Y. while

14

other objects of type X may inherit properties of type Z. In SF the first kind of inheritance.is handled by multiple application of the ISA. and the second by set partitioning and ISA.

Thus. for a boat hiring example to be discussed in detail further on. the dependencies

defined bv

TYPE B (SUBSETS: R (SUBSETS: F. H. OD, M ISA Maintenance-object)
ISA Registered-object. DR)
ISA Water-vehicle ISA Hire-object;

have the graphical representation:

MO RO WV HO

/

In this diagram ISA links are represented by solid lines; subset relationships by dashed

lines. The subset names R and DR are abbreviations for Registered and Deregistered.

respectively. Subset names M. OD. H, and F refer to boats that are in maintenance, over-

due (i.e.. were not returned when expected), hired, and free for hire.

The usefulness of inheritance depends on how easy it is to create a new type from its

parent types. Suppose that the parent types have available functions f 1. f 2 f, fk.

and the declaration of a new type T contains functions i..... fk. .f .. I.. f,. Then type

T inherits functions f I. 'f 2 f . While functions f. f,1 may not be changed by

15

events in the segment of T. functions f f may be changed, but the changes are not

propagated back to the parent segments.

The inabilitv to make changes in a parent type is a special case of the general principle

that no SF event may directly change an object that does not belong to the segment in

which the event resides. Suppose that type B is the basis type for a segment Boat hire.

Then no event in this segment may change anything in an'. other segment. sav one that

deals with repair of boats. However, we may import types. and declare instances of the

imported type locally in the importing type: Changes may then be brought about in the

locally declared instances. For example. in an airline reservation system customers may

have to be put into waiting lines. The type of queue would be imported. It would provide

the operations, but the actual queues of customers would reside in the reservation system

as locally declared instances.

But changes can be brought about in other segments indirectly. This is by message

passing. An SF message (or flag) is a signal. which may be provided with arguments. A

signal. after it has been raised by an event, is picked up by a responder transaction, either in

the same segment, or. in case the signal is declared as exported. in another segment. A sig-

nal remains alive until it is explicitly turned off. A variant of signals consists of counters.

which may be incremented or decremented. A counter remains alive until its value drops

to zero. Signals also provide the means of communication between segments. Thus. seg-

ment A may request segment B to perform some action by raising a flag. This flag is

exported by segment A and imported by segment B. Segment B may inform segment A of

the completion of the action by an explicit second signal. or merely by turning off the flag.

The interleaving of events and transactions make SF processes equivalent to Petri nets, with

the manipulation of signals and counters corresponding to the movement of tokens in a

Petri net.

The responder processes signals immediately, at some specific time. e.g.. 06:30 every

morning, or at set intervals. The responder initiates events on its own accord, prompts the

16

user to initiate events, or reminds the user that some action is to be performed. For exam-.pie. in a system that manages bank accounts, a Aithdrawai e\ent may cause the account to

become o\erdra\.'n. In such a case an overdraft signal is to he sent to the responder. A

transaction in the responder novX initiates an event that assesses a penalty charge against the

account. and reminds the account manager to send out an overdralt notice to the customer.

e, eni may it1,dte anc': her e, en directiv--all such initiatn, ha e i' he carried out via

transactions. Events initiated by the responder are called internal events; all other events

are external. Internal events have no preconditions--all input data ass'Nciated with such

events are assumed to have been already checked. Sometimes. however, the responder

establishes that external events are to be initiated. In such a case the responder issues

prompts to the user. For example. in the assigning of referees to a paper, the responder

prompts the user to initiate referee assignment events until the required number has been

reached. Reminders issued by transactions do not in general relate to events.

The separation of the action of sending out a message (i.e., raising a signal as part of

an event) from the definition ol the ultimate effect of this message (in a responder, which

may reside in a different segment) has several pleasing features. First. the events can be

defined independently of the responder. and all decisions regarding the precise effect of a

message can be postponed. Second. because messages are not addressed, more than one tran-

saction can pick up a message. which adds to the flexibility of the entire system. Third. all

indications of the time dependence of the effect of a message belong to the definition of the

responder. i.e.. the specification of time-related aspects of the system is confined to

responders.

17

Formal Specification of Software Support Materials

SF Specification: Boat Hire

Aifs Berztiss

University of Pittsburgh

A (relatively) simple problem is posed and solved in set-function notation.

18 Draft For Public Review SEI-SM-8-1.0

SF SPECIFICATION: BOAT HIRE

Our first example of an SI specification relates to an enterp-ie that hires out boats.

Hirin, hours are 9:00 tc 20:00. and all boats must be back b\ 21:(M. lhe 'e: oi interest is

that of boats (B). xhich is partitioned into the subsets of registered (R) and deregistered

(DR) boats. The latter are no longer in use. i.e., have been scrapped. The set of registered

boats is partitioned into free (F). hired (H). overdue (OD). and "maintained" (M) boats.

The boats in set Al are to be inspected, and the inspection indicates that they are free of

defects, to be repaired. or beyond repair. The labels in secondary set 'code correspond to

these possibilities. The majority of the events move boats from one of these subsets into

another. They are Hire (which moves a boat from subset F to subset H): Return (from H. to F or to A): Marko -due (from H to OD. applied to all boats that ha\ e not been returned

at some specified time after 21:00): Recover (from OD to M): Inspect (from F to M):

Maintenance'check (from Al to F): Reinstate (from M to F).

Event Buy'boat brings a boat into the enterprise: event Deregister'boat takes it out.

The purpose of Needs-analysis is to update a parameter that indicates how many additional

boats the enterprise needs. Events Deregister boat. Mark-ohdue. and Reinstate differ from

the others in that they are initiated by the s-stem itself. i.e.. thev are internal. Events mav

have certain control functions. For example. %,hen a boat is returned, and it had been hired

out for 200 hours or more since its last inspection, the sigcondition Check condition asks the

responder to initiate a maintenance inspection of the boat. Such an inspection is mandatory

when an overdue boat has been recovered.

We would like to answer rather complicated queries, such as "What is the total time

for which boat x has been hired this month?" The functions of the type B serve mostly

this purpose. For example. Latest-hire indicates the time at which the latest hiring event

took place for the given boat, and H-set returns a set of triples indicating for each regular

19

hiring event the date and time the event took place, as well as the length of the interval for

which the boat had been out.

These functions require the importation into the segment under consideration of

several predefined types: rmin. with function rnowmin that returns the current time

with a resolution of one minute. and in which comparisons are standard operations: Date.

again with comparisons, and the function D-now that returns the current date: T-dur-nin.

which consists of durations of time intervals measured in minutes, and in which subtrac-

tion of times. dates, or of pairs consisting of dates and times are standard operations.

Notation: In the specification of an event a primed quantity indicates a value after the

event, an unprimed quantity indicates a value before the event. X-set stands for the power

set of X. Let us also interpret the notation in the specification of the functionality of

l-Fsigma. This is a defined function in the sense that it can be constructed from some other

function, namely H-set here. The function Coord belongs to the basic type of maps--here it

extracts the third coordinate from each triple in the range of H-set.

SEGMENT Boat-hire:

IMPORTED TYPE Tmin ENDTYPE;

IMPORTED TYPE Date ENDTYPE:

IMPORTED TYPE Tdur-min ENDTYPE:

TYPE B (SUBSETS: R (SUBSETS: F, H, OD. M ISA Maintenance object). DR)
ISA Water-vehicle ISA Hire 'bject:

SECONDARYSETS- S'code = {"ok". "repair". "scrap"):

FUNCTIONS- Boat in: B 4 Date:

Latest hire" R -o T min:

H-set" R) (Date x T-min x T-dur-min)-set:

H -sigma: R -) Tdur r-min: H "sigma(b) =

Allop (+. Coord (H -set (b). 3)):

H-hist" B) (Date x T-min x T dur-min)-set:

OD-set B - (Date x T -min)-set:

20

REC set: B (Date x T-min)-set.

INSP set: B Date -set:

Inspection -code: M - S -code:

Boat -shortage: - Integer:

ENDTYPE:

EVENT Buy boat(boat):

PRECONDITIONS- not(Mir'ember (boat, B)):

SETCONDITIONS- P' = F U lbat

MAPCONDITIONS- Boat -in'(boat) = D 'now:

Boat -shortage' = Boat -shortage - I;

ENDEVENT:

INTERNAL EVENT Deregisier boat(boat):

SETCONDITIONS- R' = R - iboat }:

DR'=DR U Ib=a:

MAPCONDITIONS- Boat -shortage' = Boat -shortage + 1;. ENDEVENT;

EVENT Needs analysis(k: Integer):

MAPCONDITIONS- Boat -shortage' = Boat -shortage + k;

ENDEVENT:

EVENT Hire(boat):

PRECONDITIONS- Member (boat .F):

T-now -min -< 20:00:

SETCONDITiONs- F' = F - {boat 1:

H'=H U {boat}:

MAPCONDITIONS- Latest -hire '(boat) = T-now -min;

ENDEVENT:

EVENT Return(boat):

DEFINITIONS- t -dur : T-now -min - Latest -hire (P'oat);

PRECONDITIONS- Member (boat H):

SETCONDITIONS- H' = H - {boat };

21

H sigma'(boat) > 200:00- M' = M U Iboat}:

H-sigma'(boat) < 200:00- F' = F U {boat):

MAPCONDITIONS- H "set '(boat) = H -set (boat) U I < D -now, Latest -hire (boat). t dur > 1:

SIGCONDITIONS- H "sigma'(boat) > 200:00 -- (Check -conditinn (boat))ON:

ENDEVENT:

INTERNAL EVENT Mark o-due(boat):

SETCONDITIONS- H'= H - lboat):

OD'=OD U (boat);

MAPCONDITIONS- OD set '(boat) OD set (boat) U {<D now. Latest hire (boat)> }:

ENDEVENT;

EVENT Recover(boat):

PRECONDITIONS- Member (boat OD);

SETCONDITIONS- OD' = OD - {boat I;

M'=M U {boat):

MAPCONDITIONS- REC -set '(boat) = REC -set (boat) U <D now. T -now -min>

SIGCONDITIONS- (Check -condition (boat))ON:

ENDEVENT;

EVENT Inspect(boat):

PRECONDITIONS- Member (boat, F);

SETCONDITIONS- F' = F - {boat };

M' = M U {boat };

SIGCONDITIONS- (Check -condition (boat))ON:

ENDEVENT:

EVENT Maintenance'check(boat, status: S'code):

SETCONDITIONS- status ="ok" o

BLOCK M' = M -Iboat):

F'=F U {boat):

ENDBLOCK;

MAPCONDITIONS- H "hist '(boat) = H ~hist (boat) U H -set (boat);

H "set '(boat) = Nullset :

INSP-set '(boat) = INSP-set (boat) U {D now }:

22

SIGGONDITIONS- status ="repair" i. Repair -boat (boat))ON:

status ="scrap" (Scrap -boat (boat 00OX

(Check -condition (boat)))OFF:

ENDE VENT:

INTERNAL EVENT Rt'instre(Ma):

SETCONDITION\S- M, =l M boat 1:

F'= F U lboat I

ENDE VENT;

TRANSACTION Maintenance:

@ (T-min-now): Fordil (x): Member (x, M): ON(Check -condition (x))ON-

PROM PT(Maintenance -check: x)

ENDTRANSACTION:

TRANSACTION (f due-check;

@ (21:15): Forall (x): Mlember (x, H H): Mw-ak o -due (x)

ENDTRANSACTION;

TRANSACTION Check-needs:

Member (D -now + 1. EOM -dates) o~ PRO MPT(Needs -analvsis)

ENDTRANS ACTION:

TRANSACTION Boat purchase:

Member (D -now ., EOM -dates)PRO\IPT('IBuy boat"): TI\IES(Boat -shortage)

ENDTRANSACTION.

TRANSACTION Boat repair:

(This transaction is triggered by Repair-boat; it signals some other segment-- the
actual repairs are undertaken in this other segment. and depend on availability
of resources: the flag Boat-repaired of transaction Back-in service is set bv some
event in the other segment. *. ENDTRANSACTION:

23

TRANSACTION Back in-service:

@ (T -min-now): Forall (x): Member (x . M): ON(Boat -repaired (x))OFF- Reinstate (x):

ENDTRANSACTION:

TRANSACTION Send-out searchers:

Foral (x): Member (x , OD): REMIND("Find boat": x):

ENDTRANSACTION:

TRANSACTION Scrapping'of-boat:

Forall (x): Member (x . M): ON(Scrap -boat (x))OFF- Deregister -boat (x);

ENDTRANSACTION;

TRANSACTION Deregistration-test:

Forall (x): Member (x . OD): D -now -

Allop (max. {y I y = Coord (OD -set (x), 1)}) > 7) Deregister -boat (x)O

ENDTRANSACTION;

ENDSEGMENT:

Transactions are of two types. First. transactions that are to take place at a given

time are marked with the symbol @. e.g.. @(21:15). @(Tnow'min) In our example one

marked transaction is to take place at 21:15. at which time the event Mark odue is to be

initiated for all hired boats that are still out. Unmarked transactions are performed

according to a fixed schedule, which is once a day in our case. E.g.. for each overdue boat, a

reminder is issued that this boat is to be looked for. As another part of this daily procedure

the current date is compared against end-of-month dates (in set EOM-dates. which belongs

to type Date). -nd transactions Boat-purchase and Check-needs are initiated on an end-of-

month date or the day preceding it, respectively. Typically, a transaction initiates an event.

issues a reminder, or issues a prompt. Reminders do not in general relate to events. On the

other hand, prompts ask the user to initiate events. These events are not external, but the

24

system cannot initiate them on its own. For example. the purpose of event

*;aintenance check is to determine what is to be done to a boat on the basis of the value of

status. However. the user has to supply this value.

0

0
25

Formal Specification of Software Support Materials

SF Specification: A Library System

Aifs Berztiss
University of Pittsburgh

One of the problems from the Fourth International Workshop on Software Specification and Design is described
and solved in set-function notation. (Problems from this workshop appear often in the literature-instructors are
encouraged to look for comparative examples in other notations.)

26 Draft For Public Review SEI-SM-8-1.0

SF SPECIFICATION: A LIBRARY SYSTEM

The library system is another ot the problems .elected for study at the Fourth Inter-

national Workshop on Software Specification and design. A basic requirement is that the

library is to provide for multiple copies of particular titles. This means that a distinction

has to be maintained throughout between titles of books and copies of books. We shall use

the term book only when this term could indicate either a title or a copy. An informal

statement of additional requirements and constraints on the system:

" copies are added to the library and are removed;

" copies are checked out and returned by borrowers:

* every copy is either in the library or else it is checked out to a borrower:

O no more than a predefined number of copies may be checked out to a borrower.

The system is to have these minimal query-answering capabilities:

" listing of books by a particular author or in a particular subject area:

* listing of copies that are checked out to a given borrower (restricted to library staff

except that borrowers may find out what copies they themselves have borrowed):

" indication of the name of the borrower who last checked out a particular copy (res-

tricted to library staff).

The distinction between titles and copies indicates the need for at least two segments

in the system. The segment for titles then relates to information that is common to all

copies of a particular book. such as the author or authors and the subject areas of the book.

Addition or removal of copies can have an impact on the titles segment. Thus. when thee very first copy of a particular title arrives at the library, appropriate information has to be

added in this segment. Again. when the last copy of a title is removed, the information

27

regarding this title is not deleted, but is archived. The archiving is implemented by the par-

titioning of the set of titles into subsets INCAT and HASBEEN. and moving the title from

INCAT into HASBEEN. Should a new copy of the book become again part of the library

holdings. then the title is restored to INCAT.

The primary event is the addition of a copy to the library, but this event requires that

the title be already registered in the titles segment. Consequently the addition of a first

copy is somewhat circuitous: the copies segment signals the titles segment that a new title is

to be added; after the title has been added, a signal goes back to the copies segment to ini-

tiate addition of the copy: the copy is finally added to the catalog.

SEGMENT Titles;

IMPORTED SIGNALS Add-title, Drop-title, Move-title;

EXPORTED SIGNALS Catalog-copy;

IMPORTED TYPE Author ENDTYPE:

(*Some types. such as Integer. Boolean. and Text are assumed to be universally
available. The form Subject-area: Area used below indicates that Area is an
abbreviation of Subject area. *)

TYPE Title: T (SUBSETS: INCAT, HASBEEN):

SECONDARY SETS- Subject-area: Area:

FUNCTIONS- title -text : T Text;

authors: T - Author -set;

subjects: T - Area -set:

ENDTYPE;

EVENT Add-title(newcopy: book; t: Text; A: Author-set; S: Area-set):

(* The types of arguments t. A and S are known, and are indicated in the list of
arguments: book has not yet been added to set T, i.e., it has no type: newcopy
is an argument that is being passed through from the copies segment back to
the copies segment, where it will become part of the set C. *)

PRECONDITIONS- not(member (book . T));

SETCONDITIONS- INCAT' = INCAT U {book ;

28

MAPCONDITIONS- title -text '(book) = t

is authors '(book) = A"

subjects '(book) =S

SIGCONDITIONS- (Catalog -copy (newcopy, book))ON:

ENDEVENT:

INTERNAL EVENT React ivate(newcopy. book):

SETCONDITIONS- INCAT' = INCAT U {book }:

HASBEEN' = HASBEEN - {book):

SIGCONDITIONS- (Catalog -copy (newcopy . book))ON;

ENDEVENT:

INTERNAL EVENT Drop'title(book):

SETCONDITIONS- INCAT' = INCAT - (book):

HASBEEN' = HASBEEN U (book }:

ENDEVENT:

. TRANS ACTION:

@ (T -min . now): ON(Add -title (newcopy, book))OFF:

PROMPT(Add -title: newcopy, book);

ENIDTRANSACTION,

TRANSACTION:

@ (T-min . now): ON(Drop-title (book))OFF: Drop -title (book);

ENDTRANSACTION:

TRANSACTION:

@ (T -min .now): ON(Move -title (newcopy, book))OFF: Reactivate (newcopy, book);

ENDTRANSACTION:

ENDSEGMENT:

29

SEGMENT Copies:

IMPORTED SIGNALS Catalog-copy: (* This signal may also be set locally. *)

EXPORTED SIGNAL Drop-title. Move-title, Add'title:

IMPORTED TYPE Title: T ENDTYPE:

IMPORTED TYPE Borrower: B ENDTYPE:

TYPE Copy: C;

(S Values in parentheses are starting values. *)

FUNCTIONS- book "id: C - T;

borrowed: C - Boolean (false);

last "out: C *B (nil):

books "out: B lnteger (0);

limit: I Integer (0):

ENDTYPE:

EVENT Set limit(k: Integer):

MAPCONDITIONS- limit' = k

ENDEVENT:

EVENT Check copy(newcopy, book):

SIGCONDITIONS- member (book. INCAT) -* (Catalog -copy (newcopy . book))ON:

member (book. HASBEEN) - (Move -title (newcopy . book))ON:

not(member (book , T)) -o (Add -title (newcopy . book))ON:
ENDEVENT:

INTERNAL EVENT Add'copy(newcopy, book):

SETCONDITIONS- C' = C U (newcopy):

MAPCONDITIONS- book "id '(newcopy) = book:

ENDEVENT;

EVENT Remove copy(copy):

PRECONDITIONS- member (copy, C):

not(borrowed (copy)):

30

SETCONDITIONS- C' = C - icopy 1:

SIGCONDITIONS- card (x book id'(x book id (copy 0

(Drop -title (book -id (copy)))ON;

ENDEVENT;

EVENT Check out(copy, borr: B):

PRECONDITIONS- member (copy C):

not(borrowed (copy)):

books out (borr) < limit;

MAPCONDITIONS- borrowed '(copy) = true:

last -out '(copy) = borr :

books -out '(borr) = books -out (borr) + 1:

ENDEVENT;

EVENT Check'in(copy, borr: B);

PRECONDITIONS- member (copy. C);

last -out (copy) = borr;

MAPCONDITIONS- borrowed '(copy) = false;

books -out '(borr) = books -out (borr) - 1;

ENDEVENT:

TRANSACTION:

@ (T-min . now): ON(Catalog -copy (newcopy , book))OFF: Add -copy (newcopy. book):

ENDTRANSACTION:

ENDSEGMENT:

The answers to queries are simply values of functions for given arguments. Thus

last-out(copy) returns the last borrower of a copy. However, to determine the set of books

checked out to borrower x, we need a defined function

out -set: B - C -set: out -set (x) =

y I last -out (v) x A borrowed (y)}.

Note now that function out-set makes the explicit map bo)ks-out redundant:

31

books out: B - Integer: books -out (x) card (out -set (x)).

Queries regarding books by subject matter or by author can be given several interpre-

tations. Under one interpretation the answer should be a listing of titles, irrespective of

whether any copies of a particular title are indeed currentl\ in the library. Under a second

interpretation all currently available copies should be listed. Actually the most useful

response seems to be a listing of all titles of which at least one copy is currently available:

titles "by "topic: Area --+ T-set:

titles -by topic (x) = {y I member (x , subjects (y)) A member (y. INCAT) A

Allop (V: J not(borrowed (z)) I book -id (z) y

The definition of titles'by-author is analogous.

Let us now consider authorization. Evaluation of functions titles-by-topic and

titles'by-author can be requested by everyone. However, evaluation of books'out(x) can be

requested only by a librarian or by borrower x. This restriction takes care of itself if the

identifiers of borrowers are known only to borrowers themselves and to the library staff.

i.e.. one must know x to access books-out(x). Only librarians ma, initiate events.

32

Support Materials Formal Specification of Software

SF Specification: An Elevator Controller

Alfs Berztiss
University of Pittsburgh

This is another example from the Fourth International Workshop on Software Specification and Design, also
solved in set-function notation. This problem is more complicated than the library problem.

SEI-SM-8-1.0 Draft For Public Review 33

SF SPECIFICATION: AN ELEVATOR CONTROLLER

The elevator controller is the third problem selected for study at the Fourth Interna-

tional Workshop on Software Specification and design. Here the qpecification is to indicate

the responses of a system to user requests. Each elevator has a set of buttons, one for each

floor. They light up when pressed, and the elevator is then to visit the indicated floor. The

light goes off when the elevator halts at this floor. The lit-up buttons define an agenda for

the elevator. No floor can be added to the agenda tha. is not in the current direction of

travel. All lights go off when a sensor determines that the elevator is empty. An elevator

with an empty agenda is in an idle state.

Floors have outside buttons, to request up- or down-elevators. An outside button also

lights up when pressed, and the light goes off when an elevator going in the appropriate

direction visits this floor. The system should give equal priority to each outside request.

Each elevator has a stop button. Pushing in of this button causes the elevator to go

out of service if it is at a floor, or to go out of service after reaching the next floor if it is

between floors. The stop is terminated by pulling out the stop button.

We propose two segments. Elevator and Dispatcher. Suppose the system consists of k

elevators. The elevator segment is to specify the operation of one such elevator in terms of

the agenda. At implementation time k processes will be instantiated from this specification.

The dispatcher segment is to look after the servicing of outside requests. The dispatcher

would add floors to the agendas of the individual elevators, and send idle elevators to hold-

ing floors in order to provide efficient service. The dispatcher operation would be deter-

mined by a complicated scheduling algorithm, but the development of algorithms is a func-

tion of design rather than of specification. In other words. the purpose of specification is to

indicate what a system is to accomplish, not how it is to do this. Consequently we can

34

define Elevator fully, but as regards Dispatcher. can do no more than pass through to the

. design stage the requirement that the system of elevators be fair.

dstp 'upstopj

The states of an elevator

The operation of an elevator can be looked at as transition between states, as shown in

the figure above. When the elevator is in motion, it is either in an up or in a down state.

When it halts at a floor, there is a transition to an uphalt or a dhalt state. respectively.

From a halt state it can resume motion. become idle. or be stopped. The elevator can also be

stopped. i.e.. taken out of action, when it is in motion. There are two stop states. upstop

and dstop, because there are two possible states of motion that the elevator can attain on

resuming motion after passing into a halt state from a stop state. The elevator is taken out

of the idle state by the dispatcher.

Actually the dispatcher can influence the operation of an elevator in three ways: an

idle elevator may be moved to a particular floor: an idle elevator may be brought out of the. idle state: an elevator in the up or down state or in one of the halt states may have a floor

added to its agenda. The respective signals are Move-idle. Activate-elevator, Add'to-agenda.

35

Another way of looking at the actions of an elevator is in terms of sequences of

events. Such sequences can be regarded as processes. The mechanism for defining a process

is provided by SF signals, e.g.. event A sets flag F. and a responder transaction initiates

event B on account of flag F having been set. Such interleaving of events and transactions

suggests the use of Petri nets to model the sequencing of events. This will be discussed

further on.

The methodology used in the specification of the elevator differs in some ways from

that used in the specification of the library system. One difference is that we introduce a

special class of functions that we call sensors. They are actually devices that supply a

value on demand. One sensor (nullweight) indicates whether the elevator is empty; another

(floor'now) indicates the floor at which the elevator is currently located. There is also the

Next floor-sensor, which is a signal that is set whenever the elevator passes a special sensor

in its travel between any two floors. This signal initiates an event (Passing-sensor) that

determines whether the elevator is to continue in motion or is to halt at the next floor.

Continuation of motion or halting is regulated by two signals that enable segment

Elevator to communicate with the mechanical controls of the elevator, namely the signals

Motion-up and Motion-down. Very similar is the signal Door-open: it causes the elevator

door to open when it is on. and the elevator door to close when it is off. The elevator is

stopped by means of event Stop'elevator. which is initiated by the pressing of a stop-button

inside the elevator. This event causes an alarm to sound (by means of the signal Alarm).

The reciprocal event Reactivate-elevator stops the alarm. There are also signals to control

the illumination of floor indicators: Light. one for each floor selection button within the

elevator, and Uplight and Dlight, which are two buttons by which elevator service for going

up or going down can be requested from the outside (of course the bottom and top floors

have just a single button). We refer to these signals collectively as mechanisms.

36

* EGMENT Elevator:

IMPORTED SIGNALS Activate-elevator, Add'to'agenda. Move-idle:

SENSOR SIGNALS Next'floor-sensor;

MECHANISMS Door-open. Alarm, Light, Uplight, Dlight. Mntion-up. Motion-down;

IMPORTED TYPE Time: T ENDTYPE;

IMPORTED TYPE Time'interval: T1 ENDTYPE:

TYPE Elevator: E:

SECONDARY SETS- S = ("idle", "up". "uphalt, "upstop". "down", "dhalt", "dstop"};

Floor : F = Integer;

FUNCTIONS- state: E S S;

lowfloor: E -*F:

highfloor: E -- F;

clock: E T:

delay: E TI:

agenda" E XF - Boolean (false);

SENSORS- floor -now: E - F:

nullweight: E -- Boolean:

ENDTYPE:

EVENT Initialize-elevator(e: low, high: F: interval: TI):

(* Parameter interval indicates the time for which the elevator door is to be kept
open after it was last opened or a person stepped through it. *)

MAPCONDITIONS- state '(e) = "idle";

lowfloor '(e) = low:

highfloor '(e) = high:

delay '(e) = interval:

ENDEVENT;

INTERNAL EVENT Activate-elevator(e; x: S):

(* Initiated by the dispatcher via signal Activate-elevator. *)

MAPCONDITIONS- state '(e) :

clock '(e) = T.now:

37

SIGCONDITIONS- (Door -open)ON:

x = "uphalt" -) (Uplight (floor -now (e)))OFF:

x = "dhalt" -o (Dlight (floor -now (e)))OFF:

(Process -halt (e))ON:

ENDEVENT;

INTERNAL EVENT Enter-halt(e);

MAPCONDITIONS- agenda '(e. floor -now (e)) false:

not(nullweight (e)) - clock '(e) = Tnow;

SIGCONDITIONS- not(nulweight (e))

BLOCK

(Door -open (e))ON:

state (e) = "uphalt" - (Uplight (floor -now (e)))OFF:

state (e) = "dhalt" - (Dlight (fior -now (e)))OFF:

(Light (e, floor -now (e)))OFF:

(Process -halt (e))ON:

ENDBLOCK;

nullweight (e) (Idle -elevator (e))ON:

ENDEVENT:

EVENT Press'button(e; floor: F);

(* Only floors in the direction of travel of the elevator may be added to the
agenda. *)

PRECONDITIONS- state (e) = "up" V state (e) "uphait") floor > floor -now (e):

state (e) = "down" V state (e) = "dhalt" - floor < floor -now (e):

not(member (state (e). {"idle", "upstop". "dstop"})):

MAPCONDITIONS- agenda '(e. floor) = true:

SIGCONDITIONS- (Light (e, floor))ON:

ENDEVENT:

INTERNAL EVENT Add-to-agenda(e; floor: F);

(S Initiated by the dispatcher. *)

MAPCONDITIONS- agenda '(e. floor) true;

ENDEVENT:

38

.INTERNAL EVENT Process'halt(e):

SIGCONDITIONS- Allop (A not(agenda (e. x)) I lowfloor (e)<x K< highfloor (e))

(Idle "elevator (e))ON:

Allop(V: {agenda (e. x) I lowfloor (e)4<,x -<high floor (e)}) -

(Set -in-motion (e))ON:

ENDEVENT:

INTERNAL EVENT Set in-motion(e);

MAPCONDITIONS- state (e) = "uphalt" o state '(e) = "up":

state (e) = "dhalt") state '(e) = "down":

SIGCONDITIONS- (Door -open (e))OFF;

state (e) = "uphalt" -) (Motion -up(e))ON;
state (e) = "dhalt" --+ (Motion "down(e))ON;

ENDEVENT;

INTERNAL EVENT Passing'sensor(e):

MAPCONDITIONS- agenda (e. floor -now (e)+1)) state '(e) = "uphalt":

agenda (e. floor -now (e)-) - state '(e) = "dhalt":

SIGCONDITIONS- agenda (e . floor -now (e)+ 1) - (Motion "up(e))OFF:

agenda (e , floor -now (e)-1) -) (Motion -down(e))OFF;

agenda (e. floor -now (e)+1) V agenda (e, floor -now (e)-)

(Enter -halt (e))ON:

ENDEVENT:

EVENT Stop'elevator(e):

MAPCONDITIONS- state (e) = "down" V state (e) = "dhalt"

state '(e) = "dstop";

state (e) = "up" V state (e) = "uphalt" --

state '(e) = "upstop";

SIGCONDITIONS- state (e) = "down" - (Motion "down(e))OFF:

state (e) = "up" ---* (Motion -up(e))OFF;

(Alarm (e))ON;

(Door -open (e))ON:

ENDEVENT;

39

EVENT Reactivate-elevator(e): I

MAPCONDITIONS- state '(e) = "upstop") state (e) = "uphalt":

state '(e) = "dstop" - state (e) = "dhalt";

SIGCONDITIONS- (Alarm (e))OFF:

('nter -halt (e))ON:

ENDEVENT:

INTERNAL EVENT Idle'elevator(e);

MAPCONDITIONS- state '(e) = "idle";

Allop (A ; not(agenda '(e , x)) I lowfloor (e)(x <highfloor (e)});
SIGCONDITIONS- Allop (A: {(Light (e, x))OFF I lowfloor (e)(x <highfloor (e)});

(Door -open (e))OFF;

ENDEVENT;

INTERNAL EVENT Move'idle(e: floor: F);

(* Initiated by the dispatcher. *) 0

MAPCONDITIONS- agenda '(e, floor) = true:

floor > floor -now (e)) state '(e) = "uphalt".

floor < floor -now (e) -) state '(e) = "dhalt",

SIGCONDITIONS- (Set -in-motion (e))ON:

ENDEVENT:

EVENT Update-clock(e):
(* Initiated by breaking a light beam across the door of the elevator or by

some similar device. *)

MAPCONDITIONS- clock '(e) = T.now;

ENDEVENT;

EVENT Open-door(e):

(* This event is required for people to get out who somehow find themselves in
an idle elevator. Raising the flag Process-halt ensures that the opened door
will ultimately close again. *)

40

MAPCONDITIONS- clock '(e) = T.now

SIGCONDITIONS- (Door -open (e))ON:

(Process -halt (e))ON;

ENDEVENT:

TRANSACTION;

@ (T.now): ON(Activate ~clevator (c))()FF: Activate -elevator (e);

ENDTRANSACTION:

TRANSACTION:

@ (T.now): ON(Add -to agenda (e, floor))OFF: Add -to-agenda (e. floor):

ENDTRANSACTION;

TRANSACTION:

@ (T.now): ON(Move -idle (e. floor))OFF: Move -idle (e. floor);

O ENDTRANSACTION:

TRANSACTION:

@ (T.now): ON(Enter -halt (e))OFF: Enter -halt (e);

ENDTRANSACTION;

TRANSACTION;

(* The delay is to give passengers time to press destination buttons. *)

@ (clock (e)+delay (e)): ON(Process -halt (e))OFF: Process -halt (e);

ENDTRANSACTION;

TRANSACTION:

@ (T.now): ON(Set -inmotion (e))OFF: Set in'motion (e);

ENDTRANSACTION;

41

TRANSACTION:

.@ (T-now): ON (Next -floor -sensor (e))OFF: Passing -sensor (e)

END)TRANSACTION:

TRANSACTION:

@(T.now ': ON\(idle -elevaior (e))OFF: Idle -elev'ator (e):

ENDTRANSACTION,

ENDSEGMENT:

42

Support Materials Formal Specification of Software

*The Specification Process

Als Berztiss
University of Pittsburgh

The process of creating specifications, especially in the set-function methodology, is described. Note that the
elevator problem (previous section) is discussed at the end of this section.

SEI-SM-8-1.0 Draft For Public Review 43

THE SPECIFICATION PROCESS

SEGMENTATION OF SF SPECIFICATIONS

The initial task in ,he specification process is to define the segments. Discussions with

clients and within specification groups establish a common vocabulary. For the most part

data types derive from nouns in the vocabulary, events from verbs. Functions are defined

in anticipation of the queries that will be put to the system or of the support needs for the

control activities of the system. (The information needed to evaluate preconditions of

events can be regarded as provided by internal queries.) At this stage no thought should be

given to responders or signals. Nevertheless, the initial scheme will become modified a few

times.

Alternatives will have to be weighed one againsi another. For example, a withdrawal

from an account mav be considered as an event that modifies functions belonging to seg-

ment account. Alternati\el.. withdrawal could itself be a segment. There would still be a

withdrawal event, but this event would modify functions of segment withdrawal. Of

course. withdrawals also affect balances in accounts, but the balance adjustments can be

accomplished by means of signals that initiate internal events in account.

It is important to realize that there is no "best" solution, although we do recommend

that each segment be identified with a data type. The first factor to affect segmentation is

the client's viewpoint. If the primary purpose of the banking system is to provide informa-

tion regarding accounts. then there may not be a need for a separate withdrawals segment.

But the need may exist if the primary purpose is to control the processing of withdrawals.

In other words, the segmentation should correspond to a partitioning of the system that

seems natural to the client. Therefore it is necessary to hold extensive consultations with

representatives of the client. It is essential that the segment structure be found acceptable

44

by these representatives before further work is undertaken. Unfortunately, a realistic

client-specifier interaction is difficult to provide for student projects.

Second. segmentation assists in the distribution of labor. If a team of four is to

specify an elevator controller, then a separation ur the system into four equal segments

may be appropriate, but equality (of size or difficulty) of segments is hard tc achieve. A

group of four students that worked on the specification of an ele\ator used segments

get'calls (to collect destination indications from within and calls for service from without

the elevator). add-floors (to set up an agenda), move-elevator (to see to the actual movement

of the elevator, both when it is responding to users and when it is idle). dispatcher (to

switch agendas), abnormal-stop (to deal with the pressing of the stop button). and

power-on'off (to deal with power failures).

Some of these segments consist merely of events and the responder. which goes against

our earlier recommendation that segments be data types. Although the approach was. justified here, in the long run excessive segmentation causes a heavy traffic of messages

betwkeen segments. Therefore, after the segments have been de eloped by members of the

specification team. and the initial design tested by some static analysis technique. such as a

walkthrough. segments should be amalgamated. This is a very simple process in that the

existing messages will still be needed, but they will now be passed along internally between

components of the same segment.

Other important decisions relate to type hierarchies. How should the ISA facility be

used? When is it better to have a hierarchy? When is it better to have independent seg-

ments? For a while we toyed with the idea that the titles and copies of the library system

should somehow be made into a hierarchy, but finally rejected the idea as counterintuitive.

The statement "X ISA Y" only makes sense for X a subset of 1'. Thus, in the boat example,

the set of boats in the system is a proper subset of all objects available for hire, and this set. of boats is also a subset of all water vehicles. Actually we could have refined the second

subset relation by stating that our set of boats is a subset of the set of all boats, with the

45

latter being declared a subset of all water vehicles.

The set of titles. on the other hand. defines a partition superimposed on the set of

copies. Whereas e erv boat is a water vehicle, one copy corresponds to one title, and

another copy corresponds to another title. The ISA should not be used to define aggrega-

tions either. For example. a car ma> be composed of four wheels. a chassis. etc. This means

neither that "car ISA wtweel". nor that "'hee! ISA car".

Once the precise structure of the segments has been fixed. the pre-, set-, and mapcondi-

tions of the events can be filled in. To avoid oversights, a list of all the functions of the

data type should be consulted whenever a new event is being defined, to check that all

effects of the event are indeed being considered. At this stage the need for additional func-

tions may become felt.

An important tool for identifying all the objects or entities that are to be the concern

of an information-control system. and for relating these entities to each other is Chen's

Entity-Relationship (E-R) approach. It is primarily a graphical device for displaying a

static model of an enterprise. There are two kind of boxes: rectangles for entity sets. and

diamonds for relationship sets. Boxes are linked by undirected lines, and the two boxes

linked bv a line differ in kind. Further. both entity sets and relationship sets may have

attributes. An attribute of a set is indicated by an ellipse. and there is an arrow from the

box representing the set to the ellipse.

As an illustration we show an E-R diagram for an information system that relates

students. courses, and instructors. There are two relationships. Takes and Gives. The labels

N and M mean that Takes is a many-to-many (N-to-M) relation. and labels N and 1 mean

that Gives is many-to-one from Course to Instrucior (or one-to-many from Instructor to

Course). We also show some of the attributes of Course, and an attribute of Gives. The

latter indicates whether a given instructor teaches a given course on a regular basis or under

some special arrangement.

46

Reg 'Spec

Student - Takes- Course G instructor

Location Time ii

E-R model of a section of a university information system

The equivalent SF specification consists of three components - Students, Courses. and

Instructors. The Reg/Spec attribute has to be associated either with type Course or type

Instructor. Here it is associated with Instructor. We show here just the three type

specifications.

TYPE Student: S;

FUNCTIONS- takes: S - C -set:

... (Functions that are attributes in E-R)

ENDTYPE;

TYPE Course: C;

FUNCTIONS- roster: C - S -set: roster (x) =

y I member (x .takes (y))}

instructor of : C -* F:

locale: C - Room,

meets at C - T

size-limit: C - I:

47

... ... (Further attribute functions)

FNDTYPE:

TYPL Instructor. P:

SC0)\DARYSFTS- 7'aching status: TS = {"REG". "SPfC(":

FUNCTIONS- gives: F C -set: gives (x) =

{y I instructor -of (y) = x

status: F XC - TS:

... (Attribute functions)

ENDTYPE:

The E-R philosophy is to differentiate between relations and attributes. Relations are

between entities that belong to the E-R model: attributes are maps from an entity or a rela-

tion to a data type that is external to the model. However. with the separation of the

model itself into segments such a distinction becomes rather arbitrary and artificial. Furth-

ermore. the vocabulary is increased unnecessarily. Nevertheless, the development of an E-

R model of an information system is certain to contribute to a better understanding of the

interrelation of the elements of the information system, and is therefore recommended as a

preliminary to SF specification.

THE DYNAMIC COMPONENT OF SF SPECIFICATIONS

The final stage in SF specification is the addition of the dynamic (or time-dependent.

or control) component. This consists of sigconditions. the responder, and internal events.

In some cases the dynamic component is a fairly minor addition. such as in the library

example. Surprisingly. in all our experience, the addition of the dynamic component has

required no or very minor changes to the static part of the specvfication.

48

We have found state-transition diagrams and Petri nets of great assistance in the writ-

Wing of SF specifications. An example of a state-transition diagram has already been given

for the elevator problem. For the boat-hire problem the appropriate state-transition

diagram is as follows:

A (place-transition) Petri net consists of a digraph and a dynamically changing mark-

ing pattern. The digraph consists of two disjoint sets of nodes, places P and transitions T

* and a flow relation F (PxT)U (TxP). Given transition t. the set of places

pI <p. t > EF) is the preset of t and the set of places {p I<t . p > EF) is the postset of t.

Presets and postsets of places are defined analogously. Places are usually represented by

circles, transitions by bars. Each place has associated with it a class of token types. Tokens

of different types may be distinguished by drawing them in different colors or by use of

different symbols. An initial marking provides each place with zero or more tokens of each

of the types associated with this place. and the net is then in its initial state. The net

changes states by firings. A firing of a transition is enabled if each place in its preset holds

at least one token of each of the types associated with that place. The result of the firing is

twofold. First, for each place in the preset, one token of each of the types associated with

that place is removed. Second. for each place in the postset, a token of each type associated

with this place is added. Tokens may also be added during the running of a Petri-net pro-

* cess as inputs. In the examples to be discussed here all tokens will be of the same type.

Note that we shall use Petri nets primarily as a graphical tool. An investigation of the uses

49

of the formal theory underlying Petri nets in the analysis of control systems is outside our

scope.

0 P1

TI: f:= 1

T2: f:= f*k

T3: k:= n

T4: n:= n-I

T6: n 0 T5: n > 0

Petri net for the computation of the factorial

Let us start with a very simple computation--the evaluation of factorial(n). where n

is a nonzero integer. Our first example of a Petri net is for this computation. and it is

shown with its initial marking. Transitions represent steps in the computation, and the

movement of tokens between places sees to it that these computational steps are properly

50

.sequenced. If a transition is annotated with a predicate. as T5 and T6 are in the figure, then

the normal firing rule is augmented with the requirement that the predicate be true. Sup-

pose n = 0. Then TI and T6 can fire. When they do. tokens move into P2 and P8. and the

process stops with f = 1 because no further firings can take place. On the other hand. if n is

greater than zero, then T1 fires as before, but now it is T5 that fires at the lower end. This

moves a token into P7. and T3 can fire. Firing of T3 moves tokens into P4 and P5. so that

T2 and T4 can fire next. Note the parallelism: P2, T2, P3. and P4 represent one process. the

building up of the factorial by the multiplication at T2; P5. T4. P6. T5. and P7 represent

another process, the adjustment of n at T4. The point of contact of the two processes is T3.

where the current value of n is assigned to k. An alternative would be to pass the current

value of n in a message from process to process at T3. In any case, the design of the net-

work and the initial marking make sure that the two processes do not get out of step.

0 P1 P2 * P3 P4 . P5

T. T2 -- T4

Petri net representation of mutual exclusion

Next we consider two processes that are to have access to a particular resource. but

never both at the same time. This is known as mutual exclusion. In the figure, let a token in

P2 represent access to the resource by process A, and a token in P4 access by process B.

Under the marking as shown, both T1 and T3 are enabled to fire. Suppose Ti fires. This. remuves tokens from Pl and P3 and places a token in P2. While this token remains in P2.

transition T3 cannot fire. i.e., while there is a token in P2 there cannot be a token in P4. and

51

vice versa.

In the specification of systems that are primarily control systems a Petri net may be

used from the very start to define the structure of the system. We sho' a net that

represents a manufacturing system consisting of one producer and two consumers. The

"producer" .4 consists of places P1. P2. and P3. and transitions T1 and T2. "Consumers" B

and C ha -. e the same configuration as the producer. For example. the preduce" could assem-

ble toasters, and the consumers package the toasters. The producer generates at P1 objects,

which are represented by tokens. Firing of T2 sends one token to P2 to keep the process

going, and another. which represents the generated object. to P3. The generation of an

object is triggered by the placing of a token in D.P1 (an external input), and the objects

finally go to place D.P2. which acts as a buffer. Tokens are taken off D.P2 by either B.T1 or

C.T1. the entry points to the consumer processes. The actual processing occurs at B.P1 and

C.P1. and the finished goods end up in D.P3. via B.P3 or C.P3. The initial marking consists

of one token each at A.P2. B.P2, and C.P2.

The translation of the Petri net into SF is schematic in that we ignore anything to do

with with the data base. i.e.. preconditions. setconditions. and mapconditions. It must be

understood that in SF the time at which a transition fires is explicitly defined, and that an

event triggered by a transition only takes place if its preconditions are satisfied. We let

each of processes A. B, C of the figure be an SF segment. Consider the producer process.

where we assume that the actual time to produce an object is 20 minutes. The schematic

specification of segment .4 now follows. There signal TI -start is set outside the segment.

and signal Proces5-complete triggers an event outside of segment A. Event A.P3 (and tran-

sition D.T1 appear superfluous). but they are needed to support an SF convention that no

event may be initiated directly from another segment. This contributes to the ease of

developing segments independently of each other. Hence we need a transition within seg-

ment D to initiate D.P2 (transition D.TI). and an event in A that is to trigger this transition

(event A.P3).

52

D.Pl

A.T1

*A.PI

AMT

A _P3

D.Tl

D.P

eTri neCfamnfatrn .ytm

D.53

SEGMENT A:

IMPORTED SIGNALS T1 -start:

EXPORTED SIGNALS Process -complete:

INTFRNAI EVFNT Pl:

SIGCONDITI()NS- (T2 _trigger)ON:

ENDEVENT:

INTERNAL EVENT P2;

SIGCONDITIONS- (T1 -trigger)ON:

ENDEVENT:

INTERNAL EVENT P3:

SIGCONDITIONS- (Process "complete)ON:

ENDEVENT:

TRANSACTION TI

@ (T~.Now): AND(ON(T1 -start)OFF. ON(T -trigger)OFF): P1:

ENIDTRANSACTION:

TRANSACTION T2:

@ (T-.Delay (20, T-.Now)): ON(T2 -trigger)OFF: P2 P3:

ENDTRANSACTION;

ENDSEGMENT:

The delay of 20 minutes represents the time required to produce an object. If signals

are combined by an AND, they must both be in the ON-state for anything to happen, e.g.. if

T1 -start alone is on when T1 is processed. then T1 -start does not get turned off. The

specifications of segments B and C have exactly the same form as that of A. The only

difference is in transaction T2 : this transaction is likelv to have shorter delays in B and C.

The modularization of the system has been carried out in such a way that the specifications

of segments A. B. and C would not have to be changed if they were to be used in some

other context. Here they are coordinated by segment D. and a schematic specification of D

54

. now follows.

SEGMENT D:

IMPORTED SIGNALS A .Process -compl ete, B.Process -complete. C.Proces3 -complete:

EXPORTED SIGNALS A T1 -start B.T -start, C.TI -star, P3 -inicworv

EVENT P1;

SIOCONDITIONS- (ATI -start)ADD:

ENDE VENT;

INTERNAL EVENT P2:

SIGGONDITIONS- AND(OFF(B.T1 start)ON. ON(P2 -inv'entoryv)OFF):

AND(OFF(C.T1 -start)ON, ON(P2 -inventory)OFF);

ENDE VENT:

INTERNAL EVENT P3;. ENDE VENT:

TRANSACTION T1:

@ (T.-Now): BLOCK

ON(A.Process -complete)OFF: (P2 inventory)ADD:

OR(OFF(B.TI start). OFF(C.T1 -start)): P2:

ENDBLOCK;

ENDTRANSACTION:

TRANSACTION T2:

@ (T-.Nows,): ON (B.Process -complete)OFF: (P3 -inventory)ADD:

ENDTRANSACTION:

TRANSACTION T3:

@ (T-.Now): ON(C.Process -complete)OFF: (F3 -inveniory)ADD:

ENDTRANSACTION;

ENDSEGMENT:

A.TI -start ,P2 -inventory., and P3 -inventory differ from other signals. They are

55

counters rather than flags. An ADD operation increments a count, and also identifies a sig-

nal as a counter. In this context ON(Counter) is true if Counter is non-zero, and

(Counter)OFF decrements Counter. The computation associated with the processing of a sig-

nal, such as ON(P2 -inventorv)OFF. must be atomic. Otherwise both the B T1 -start and

C.Tl start of our example could get set when there is only one item in the inventory.

Event D.P3 is left totally unspecified. Another process could be fed I y it, such as the dis-

tribution of finished products to sales points.

A problem that arises quite frequently has to do with the ISA. Suppose that referees

form a subset of persons (asserted by means of an ISA). individual x is being selected as a

referee, but individual x is not in the set of persons P. One approach is to test for member-

ship of x in P. and simply not to proceed with the referee selection event if the test is not

satisfied.

A better solution is to make referee selection a two-stage process. First test for

membership in P. If the test is passed, proceed with referee selection (as an internal event).

Otherwise raise a signal that prompts an event in the parent segment to add x to P. This

event raises a signal that causes x to become a referee. The Petri net of this paradigm:

r - - - - - - -

I)section of~parent

segment

56

SPECIFICATION OF THE ELEVATOR

The requirements statement for the problem asks for the specification of a system of

elevators. Initially we hoped to develop two segments--an elcvaor segment. and a

dispatchcr segment that was io decide which elevator was to respond toc an outside call for

service and was to mo\e idle elevators to strategically picked hoiding floors. But the

"specification" of the dispatcher then encroaches on design. An algorithm has to be selected

that is based on queueing theory and scheduling theory, and the algorithm may have to be

tuned on the basis of simulation experiments. We maintain is that a specification should be

prealgorithmic, but this means that the dispatcher cannot be specified. Of course, if the

requirements actually propose an algorithm, then the specification should reflect the charac-

teristics of the algorithm. This was the case with the two-way merge. In the present

instance, if an algorithm had been supplied for the dispatcher. then we could have written a. specification, but we could not be expected to devise the algorithm.

As regards the elevator segment, we realized from the \ery start that we should con-

sider state transitions. However, at first we had only the states idle. halt, and move. It did

not take long to realize that the halt state could not cope with emergency stops, and a

separate stop state was added. However, a whole day of false starts was wasted before the

realization that states move, halt, and stop had to be split on the basis of whether the eleva-

tor movement is up or down.

This put us in a position to define external events, but when it came to the linking of

events into processes, and the definition of internal events (eight of a total of fourteen), the

interrelation of events and transactions was becoming so tangled that we had no overview

of the total system. The Petri net representation showed below established the overview.

In the diagram of the net we use abbreviations, as listed in the table on the page that fol-

. lows the diagram of the net.

57

Sim

REE

AEEH PS E F
Aetr net oanEleao

58 P P

AE - Activate-elevator PB - Pressbutton

AtoA- Add-toagenda IrH - F' cess-halt

FH - Enter-halt PS - Passing-sensor

IE - Idle-elevazor RE - Reactivate-eievaior

Init - InitializeeL'evator SI. l - Set'-i-motion

ilI - M ve"idle Stop - ., ,p-cle'ator

NFS - Next -floor-sensor UC - Update-clock

OD - Open-door

As before, places stand for events, transitions for transactions. The transitions carry labels

that refer to the signals processed by the transactions that these transitions represent. The

broader bars indicate transactions that are initiated from the outside. The five place sym-

bols that are not part of the main net represent events that do not directly cause other.events; one of these, event Add-to-agenda. is initiated by the dispatcher.

SPECIFICATION OF DATA TRANSFORMERS

Data flow diagrams can assist in the specification of data transformers. These

diagrams form the basis of the "structured analysis" approach to development of systems.

A data flow diagram is built up of components of four types: (I) Sources and sinks, which

are external agencies that send data into the system or receive data from the system. They

are represented by boxes. (2) Processes. which are represented by circles. (3) Files or data

bases. represented by two parallel lines. (4) Data flows, which are represented by arcs link-

ing pairs of objects of the first three types.

An information-control system is based on a centralized data base, and all "flow"

relates just to the updating and interrogation of this data base. Consequently data flow. diagrams are of little use in the specification of information-control systems. But the situa-

tion is quite different with data transformers. Here actual data objects are moved from

59

process to process. and each process carries out some transformation of these objects.

Our example is the data flow diagram of a spelling checker. A text file enters the sys-

tem and the text is split into words at node SW. The word list that is the result of this

operation is sorted, and process RD removes duplicates from the sorted list. At SD (Sub-

tract Dictionary) this reduced list is compared against a stored dictionary, and words not

found in the dictionary are presented to the user.

TetWr Sorted
file _<S list Sor RDs

U

S Reduced
E file
R

_____j dictionary ,

Dictionary

Data flow in a spelling checker

Actually. with this diagram we have moved well out of specifications and into

software design. The indication that the word list produced from the-text file should be

sorted. and duplicates removed from it. is the selection of an algorithm. A specification

should not go that far. Instead, for a specification we should regard the word list (call it

W) and the dictionary (D) as sets, and the errata list is then the set difference W-D. How

the set difference is obtained should be of no concern to the writer of the specifications.

60

Support Materials Formal Specification of Software

-- Formal Specification Courses

Aifs Berztiss
University of Pittsburgh

Details of course organization are described. Examples are drawn from experiences at the University of Pitts-
burgh. Suggestions for exercises and projects are included.

S

SEI-SM-8-1 .0 Draft For Public Review 61

FORMAL SPECIFICATION COURSES

COURSE OUTLINES

These outlines relate to courses dealing with formal specification offered by the

Department of Computer Science, University of Pittsburgh. *Course CS135 is taken by

undergraduates. usually in their senior year. The prerequisite structure ensures that they

have completed at least five computer science courses. CS231A is a graduate course, where

the only prerequisite is admission to graduate study in computer science. At the University

of Pittsburgh this essentially means that the student has an undergraduate major in com-

puter science. Each lecture lasts 80 minutes.

CS135- SOFTWARE SYSTEMS DESIGN Fall 1987/8

1 (Sep. 2): Introdution to course
2 (Sep. 9): Softwdre life cycle
3 (Sep.14): Components of computations
4 (Sep.16): Principles of modularization
5 (Sep.21): The SF (set-function) methodology
6 (Sep.23): Specification: Boat hire
7 (Sep.28): Specification: A library system
8 (Ser. 30): Initial discussion of the term project
9 (Oct. 5): Petri nets I
10 (Oct. 7): Petri nets If
11 (Oct.12): Specification: An elevator
12 (Oct.14): Specification: A text formatter
13 (Oct.19): Testing of specifications

(Oct.21): MIDTERM EXAMINATION (open book)

14 (Oct.26): Site-related aspects of the SF methodology
15 (Oct.28): Property inheritance and knowledge representation
16 (Nov. 2): Review of the SF methodology
17 (Nov. 4): More on testing
18 (Nov. 9): More on the project
19 (Nov.11): Errors. uncertainties. exceptions
20 (Nov.16): Entity-relationship model

62

. 21 t N...): Abstract data types I
22 (\,-..23): Abstract data types II
2 2 -, .30f: Data types and generators
2" ()-. 2): Programming \xith generators
2 De. 7): From specifications to software I
2" E-'. 9): From specifications to software I1

"Dec.17): FINAL EXAMINATION (open book) 10:00-11:20

CS231 A- SOFTWARE ENGINEERING: SPECIFICATION AND DESIGN Winter 1987/8

1 (Jan 7': Introduction to software engineering
2 (Jan.12): Software life cycle
3 (Jan.14): Components of computations
I (Jar. 19): Abstract data types: introduction

J4- 21): Hierarchies and modules
b Jar. 26): The SF (set-function) methodology
7 (Jan.28): Specification: bank accounts
8 (Feb. 2): Specification: a library system
;- (Fe;- 4): Discussion of the term project

I .-P (Fee 9): Petri nets: introduction
11 (Feb. 1): Petri nets and SF specification
12 (Feb.16): Petri nets in process analysis. 13 (Feb.18): Specification: an elevator
14 (Feb.23): Testing of specifications
15 (Feb.25): Abstract data types I
16 (Mar. 1): Abstract data types II

(Mar. 3): MIDTERM EXAMINATION (open book)

17 (,Mr.15): Review of the SF methodology
1 (Mar.17): Specifications: a text formatter and two-way merge
19 (Mar.22): Data types and generators
20 (Mar.24): Programming with generators
21 (Mar.29): The Larch approach to specifications
22 (Mar.31): Larch and CLU
23 (Apr. 5): The Z specification language
24 (Apr. 7): Z and specification of processes
25 (Apr.12): The PAISLey and MSG.84 methodologies
26 (Apr.14): The Vienna Development Method in spec:fication
27 (Apr.19): Sites and knowledge representation in SF
28 (Apr.21): From specifications tc software by transformations: I
29 (Apr.26): From specifications to software by transformatio. ",

(Apr.28): FINAL EXAMINATION (open book)

63

PRACTICAL WORK

A course dealing with specification should be centered on a major group project. but

several individual exercises are an essential preliminary to the group project. First. this

allows the instructor to find out which specification principles and methodologies the

instructor had not full\ ex,-,lained. Second. misconceptions by individual students can be

corrected. Third. the instructor comes to understand the capabilities of the students. On an

individual basis this helps during the selection of teams for the group project. More

broadly, the level of difficulty of a project can be matched to the experience of the class.

As regards the group project, we have generally started out with four to five students

to a specification team. A smaller group may become ineffective if a member drops out or

fails to contribute adequately, and the duration of projects is too short to justify larger

groups. Our standard practice has been to assign students to groups in alphabetical order.

However, if chance puts too many weaker students in a group. some switching should be

done. Otherwise the group may not get going. For greater realism, we intend to experiment

with the transfer of stronger students from one group to another (that works on a different

project) halfway through the exercise.

Our grading scheme has been to derive 50% of the total grade from examinations and

50% from individual assignments and the project. but at times we have dispensed with the

midterm examination, in which case the project has carried 501c. assignments 25%. final

examination 25cc.

A project is first given an overall grade, for example along the lines

Quality of the specification - 20 points
Documentation - 10 points
Project log - 5 points
Validation (walkthroughs) - 10 points
General presentation - 5 points

The overall grade may then be reduced (sometimes raised) for individual members of the

team according to three criteria. First. each student is required to do a confidential rating of

64

all members of his or her team by indicating the percentage of the total effort contributed. bv each individual. Second. each group keeps a project log. The log provides a record of

attendance at meetings and of individual assignments. Third. the quality of the work

assigned to an individual is compared to the quality of the work by others in the group.

However, group interaction tends to smooth out differences in quality of a specification, i.e..

quality tends to be uniform across an entire specification document. Indeed. students work-

ing as a group influence each other in such a way that all members contribute equally, with

the weaker students investing more time in the project. The exceptions are few. and the log

and the student ratings identify them very well (a lowered score for just six of 42 students

is typical).

A LOGBOOK: ELEVATOR SPECIFICATION

Meeting # 1
,d Feb. 2, 1987

6:30 Hillman Lib.

Absent: Nobody

Accomplished: Group members simply got acquainted and discussed
possible meeting times. Monday evenings were discovered to be
the best time to meet, and it was agreed upon by all members.

Meeting # 2
Feb 19, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: Basic setup of functional requirements was es-
tablished. It was decided that two segments would be required;
an operator, and a dispatcher. The imported types and signals
were agreed upon and written. Each menber was then assigned
specific events and everybody agreed to write one version of the. event NextMove.

65

Channarasappa: AddCall ToAgenda
MoveElevator

Correa: Delete FloorFrom Agenda
HaltAtAFloor

Eaton: MoveElevator
Stop--At AFloor

Fetsko: Add SelectFloorToAgenda
EmergencyStop

Meeting # 3
Feb. 23, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: Basic structure of operator and dispatcher put
together. The assigned events were reworked at meeting so they
all used similar terms and notations. The event Next Move was
assigned to all group members again since no workable solution
could be found. The two main types: Elevator and Agenda, were
then written and agreed upon.

Meeting # 4
Feb. 24, 1987
3:30 Alumni Lib.

Absent: Nobody

Accomplished: As a group effort, an ASM chart was setup for the
event Next Move. From this chart, we were able to find the signal
and map conditions necessary to have a complete working version.
Once written, The event was vigorously tested and subsequently
found to be satisfactory.

0

66

. Meeting # 5
March 2, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: All the events were tied together after some
editions to them. The functions of each segment type were
then written. And finally, a rough version of the functional
requirements was completed. Each member was then assigned to
type in his or her events into one account or file.

Meeting # 6
March 4, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: This meeting was more or less an initial debugging
* session. As a result, errors were detected in many areas of the

requirements and fixed by the group.

Errors detected in:
Dispatcher: imported signals and types
Type Agenda: functions
Add SelectFloorToAgenda: mapconditions
NextMove: mapconditions

Operator: imported signals
Type Elevator: functions
Move Elevator: map conditions
Halt-AtAFloor: signal conditions

67

Meeting # 7
March 9, 1987
6:00 Forbes Quad.

Absent: Nobody

Accomplished: A format for the documentation was setup and
agreed upon. Each member was then assigned to write an equal
portion of it and type it in.

Channarasappa: Segment Operator
Type Elevator
Event Stop AtA Floor
HaltAtAFloor

Correa: Segment Dispatcher
Event Add Select FloorTo Agenda
Event Move Elevator
Event Emergencystop

Eaton: Event AddCall To Agenda
Event Delete Floor_From-Agenda
Event Stop_Release

Fetsko: Introduction
Event Next Move
Type Agenda

Meeting # 8
March 16, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: Material was passed out for walkthrough. A date,
time, and location was setup at the Hillman Library on March 18,
1987 at 4:00 PM.

68

Meeting # 9
March 18, 1987
4:00 Hillman Lib.

Absent: Nobody

Accomplished: The walkthrough. Errors were detected in the event
EmergencyStop which required the addition of the event EStop.
Errors were also detected in the segment operator.

Note: These errors were not fixed until the walkthrough was
completed.

Meeting # 10
March 21, 1987
6:00 Hillman Lib.

Absent: Nobody

Accomplished: The final version was reviewed and accepted by all
the group members. PROJECT COMPLETE!

FROM OTHER LOGBOOKS

Specification groups working on a student registration system were encouraged to

interview university staff actually concerned with registration before requirements were

defined. Only one member of the team was to meet with each official. Members of one

group interviewed three university officials: the Director of the Undergraduate Programs

Office in the Department of Computer Science (4 pages in the log), an official in Student

Business Services (another 4 pages in the log), and a student advisor in the College of Gen-

eral Studies (2 pages in the log). This group maintained three logs: a chronological log. a

walkthrough log. and a communications log. The latter contains the detailed accounts of

the information elicited in the interviews.

One group devised a form that was used at meetings of the group. The set of forms

Wfor all meetings was their log. A sample from this log is the next page.

69

LOG for Group 7 Page: "

Members : Cheryl Mester, David Miller, Sandra Mueller and Terry Ohm

Date : 2\:s:& 7 Time: -) 3

Who attended : Vkxk c c o. ,.,A C, \

Topics Discussed : Channirs g racm- nr_ - -\A usUi C\%

orecck nc~ r .v-cA c\oa sin~c (in\A Vc

Work completed & by Whom :

Work assigned & to whom :

..N' , .¢ "\ : " '-I

Other notes :

70

LXERCISES AND PROJECTS

.Small SF specifications. The first exercise can be the grade record for a class. Next is

an appointments calendar with reminders. From this one can advance to an automobile

maintenance data base that keeps *rack of all maintenance act:vities and reminds the driver

(,! periodic checks. At about the same level of difviitv is a subscription system that

accepts subscriptions for a journal, determines when renewal notices and follow-up notices

are to be sent out, and takes care of explicit and implicit cancellations.

Extension of the elevator specification. The elevator specification given as an example

of the use of SF can be refined. Thus, the case can be examined in which the agenda of an

elevator is empty. but nullweight returns false. This sensor can actually be replaced by a

real-valued sensor that indicates the weight of the contents of the elevator. Overloading of

the elevator can then also be dealt with. A further extension should be provided to take

care of recovery of the elevator from a power failure. Extend the given specification, but

beware of "goldplating". namely a situation in which the system becomes too elaborate. For

example. a person who has pressed a wrong button could wish for a means of cancelling

this action. However, pressing all buttons is recommended as a countermeasure to being

attacked on an elevator, and a cancelling feature would reduce the effectiveness of this

measure.

Formal-wear-hire and dry-cleaning establishment. An establishment consists of a

formal-wear-hire section and a laundry and dry-cleaning section. The formal-wear-hire

section hires out bridal gowns, ball gowns, tuxedos, and similar garments. The hiring

charge for each item is composed of a fixed charge and a variable charge determined by the

length of the period of hire. The total variable charge for a hire transaction, which may

involve several garments, depends also on the total fixed charge--the variable charge is. reduced by a percentage proportional to the amount of the total fixed charge. All garments

go to the laundry and dry-cleaning section on return, but this section also launders and

dry-cleans for the general public. Develop an SF specification of this establishment. In

71

particular, determine how much (if anything) this specification has in common with the

boat-hire specification. and devise an approach that takes advantage of any commonality.

i.e.. examine to what extent components of an SF specification can be made reusable.

Traffic lights. Traffic lights X go through a sequence green. amber. red. green.

The duration of the amber period is fixed, but the durations of the green and red periods are

adjustable parameters. Lights Y are driven by lights X. The duration of tne amber period

is the same as for lights X. and there is a fixed overlap period at which both sets of lights

show red. Write an SF specification for this system. Suppose lights Z are nov. installed.

They are to be driven by lights X and are to be synchronized with them so that the green.

amber, and red periods have the same durations for both lights, but the sequence for Z lags

behind the sequence for X by some adjustable time interval. Does this modification need to

cause any changes to the segment that controls lights X?

YO

X X Z Z
Y

X: R G R G

G G H R

Automobile cruise control. This system is to maintain an automobile at a fixed cruising

speed. A mechanism monitors the current speed of the car and adjusts the throttle setting

72

whenever the current speed has deviated too far from the selected cruising speed. There are

S three switches. The cruise control onoff switch engages or disengages the system. Cruise

control may only be engaged when the engine is on. and it automatically disengages when

the engine goes off. When the system is engaged. a cruising speed is selected by bringing the

car to this speed and pressing a "select" button. Application of brakes cuts out cruise con-

trol, and the speed has to be controlled manually. Now, if the "select" button is pressed, the

actual current speed becomes the new cruise speed, but if a "resume" button is pressed. then

the system reverts to the cruising speed in effect before braking. Acceleration also overrides

cruise control, but in this case resumption of the cruising speed is automatic. However.

"select" can again be used to select a new cruising speed. Write a formal specification for

this system.

Coin-operated luggage lockers. The basic usage of the lockers is as follows: (1) luggage

is deposited in an unoccupied locker, and the door of the locker is closed: (2) an appropriate

S payment is made. the door is locked, and the user gets a key; (3) the key unlocks the locker

door at any time within the next 24 hours. say, and the locker then reverts to unoccupied

status. Many variants of this basic pattern exist. For example, in some French railway sta-

tions lockers come in sets of six. each set being provided with just one control mechanism.

After the luggage has been deposited in an unoccupied locker and the door closed, turning of

the door handle causes the mechanism to display the amount of money to be deposited. As

coins are dropped in, the display shows how much remains to be paid. Hire is for 48 hours.

and there is a return of change in case of overpayment. On receipt of payment the mechan-

ism locks the door, prints the identifier of the locker and a numerical lock code on a slip of

paper, and outputs this slip of paper. The door is unlocked by input of the lock code from

a small keyboard that is part of the control mechanism. Note that during the time between

the turning of the door handle and receipt of the lock code it should not be possible to turn

Sthe other five door handles. Hence it is essential that a transaction be terminated whenever

this time interval exceeds a limit. "'rite a specification for this system. Write it in such a

73

way that the system can be easily converted to variable hiring times. Under this variant,

as coins are dropped in. the display shows the length of time that the payment has bought

this far.

Student registration. An SF specification of a student registration system is an open-

ended project. It can be made as modest or as elaborate as time permits. The students

should themselves decide what to include in their systems.

Merge of sorted lists. Write a specification for a data transformer that generates a

sorted list from an input of two sorted lists.

The n-queens problem. Consider the problem of placing n queens on an n x n chess

board so that they do not attack each other. The solution is a Boolean function Q,

Q: 1..n × 1..n -- + Boolean ,

such that Q(i, j) is true when square (i, j) holds a queen, and Q(i. j) is false when square (i.

j) does not hold a queen. The specification is to be a predicate N-queens(n) that is true for

every Q that solves the problem and false otherwise. (The implementation consists of

finding actual functions Q that make N-queens true.)

Solution:

N -queens (n)

Allop (A:

Allop(V {Q (i, j)

A A~lop(A; {not(Q(s, j)) I 1<s Ki-1 V i +lIs <n

A Allop(A: not(Q(i ..t)) I1 ,t Kj-1 V j+l1t < n })

A Alop (A: Is +t =i +j V s -t =i -j -* not(Q (s, t))

I (I <1<i-IV i+I4s <n)A (I< t 1 <j-1V j+l1<t n))
I l<j <nI)

I, 1 <n

A spelling checker. Using the discussion of a spelling checker given on p.54 as a guide,

develop predicative specifications of the components of the spelling checker.

74

Addztiona! specilication problems. Three interesting system descriptions that can be

con\erted into Jormal speci'iitions are given m the literature. They are a package routing

s,., lem [,xarioui and Bal;,er Co,mm C.4CAI 25 (1982). 43S-4401. a telephone dialing system

[Dasaraih\'. IEEE Tran.%.Soitwar" Eng SL-I (1985). 80-86]. and a furnace controller

[l-rom the problem set in Proc. 4t, leY natioiial Workshop on Soliware Spaciftcation and

/QS, I- (Hlarancii. ed. 4

75

UNLIMITED, UNCLASSIFIED
(CQRITY CLASSIfICATION OF THIS PAGE

b REPORT DOCUMENTATION PAGE
~EPRTSECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2.. SECURITY CLASSIFICATION AUTHORITY 3 DIST IBIJTION/AVAILAB ILITY OF REPORT

N/A APPROVED FOR PUBLIC RELEASE
2b.OECLASSIF#CATIONIOOvVNGR4AOING SCHE OULE DISTRIBUTION UNLIMITED

N/A
4 PE40 ORU-ING ORGANIZATION REPORT NUJMBERISj S. MONITORING ORGANIZATION REPORT NUMBER(S)

SEI-SM-8- 1.0

G& NAME Of PERFORMING ORGANIZATION fb. OFFICE SYMBOL 74L NAME OF MONITORING ORGANIZATION
I (it appiable)

SOFTWARE ENGINEERING INST. SET SEI JOINT PROGRA.M OFFICE

6c. ADDRESS (City. State an~d ZIP Code) 7b. ADDRESS (City. Stat If *d ZIP Code)

CARNEGIE MELLON UNIVERSITY ESD/AVS

PITTSBURGH, PA 15213 HANSCOM AIR FORGE BASE, MA 01731

So. NAME OF FUNOINGISPONSORING Sb. OFFICE SYMBOL 9. PAOCUREMEN4T INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applic..buL I

SET JOINT PROG7AM OFFICE ESD/ AVS F1962890CO003

8c ADDRESS tCity. State end ZIP Code) 10. SOURCE OF FUNDING NOS. _______

CARNEGIE MELLON UNIVERSITY PROGRAM PROJECT TASK rWORK UNIT

PITTSBURGH, PA 15213 ELEMENT NO. No. No. NO.

163 T2F N/A N/ANA

S11formal Specification of Software ______ _____
WESONAL AUTHOR(S)

Aifs Berztiss, University of Pittsburgh
13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.Mo_. Dayi IS. P AGE COUNT

FTINAT- FROM _____To____ October 1987 75
16. SUPPLEMENTARY NOTATION

17. COSATI CODES It SUBJECT TERMS 1ConfA~ ~naOn Nvwr If necee4w end idenlify by block Aumber)

FEL GROUP Sue GA formal specification verification
software specification formal method

It. AB8STRACT ICOntIAU# * #Onf% YUIf'IECCSd7 @And didtify by bloch nwmbarl

These materials support the SE! curriculum module SEI-GM-8 "Formal Specificati.on

of Software."

0 04STIGUTION/AVAILAOILITY Of ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

DPCLAS9IFIEO/UNLIMITEO ~j SAME AS APT. 0 OTIC USERkS IN UNCLASSIFIED, UNLIMITED DISTRIBUTION
2&. NAME OF RESPONSIBLE INDIVIDUAL 22b6 TELEPHONE NUMBER 22c. OFFICE SYMBOL

JOHN S. HERMAN, Capt, USAF (nld ri oe S/V

The Software Engineering Institute (SEI1) is a federally funded research and development center. operated by Carnegie
Mellon University under contract with the United States Department of Defense.O The SEI Software Engineering Curriculum Project is developing a wide range of materials to support software engineering
education. A curriculum module (CM) identities and outlines the content of a specific topic area. and is intended to be
used by an instructor in designing a course. A support matenials package (SM) contains materials related to a module
that may be helpful in teaching a course. An educational materials package (EM) contains other materials not necessarily
related to a curriculum module. Other publications include software engineering curriculum recommendations and course
designs.

SEl educational materials are being made available to educators throughout the academic, industrial. and government
communities. The use of these materials in a course does not in any way constitute an endorsement of the course by the
SEI, by Carnegie Melon University, or by the United Slates goverrimentL

Permission to make copies or derivative works of SEI curriculum modules. support materials. and educational materials is
granted. without fee, provided that the copies and derivative works are not made or distributed for direct commercial
advantage, and that all copies and derivative works cit the original document by name, author's name, and document
number and give notice that the copying is by permission of Carnegie Mellon University.

Comments on SEI educational materials and requests for additional information should be addressed to the Software
Engineering Curriculum Project. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
15213. Electronic mail can be sent to education@sei.cmu.edu on the Internet.

Curriculum Modles (* Support Materials available) Educational Materials

CM-i [superseded by CM-I191 EM-f Software Maintenance Exercises lor a Software
CM-2 kIntodicion to Software Design Eng9ineUU Protect Course
CM-3 The Software Tedwkiai Review Process* EM-2 APSE Interactive Monitor: An Artifact for Software

CM-4Sofwar Coniguatin MaageenrEngineering Education
CM-5 Softmme onfigrotetion EM-3 Reading Computer Prograr-s: Instructes Guidean

CM-4 Software SafetyExrie. CM-7 Assurance of Software Oualty
CM4 Formal Specification of Software'
CM-S Unit Testing and MAnysis
CM-t0 Models of Software Evolution: Ulfe Cycle and Proces
CM-1I Software Specifications: A Framework
CM-12 Software Meulc
CM-13 hnlroducton to Software Verification and Validation
CM-14 knallecud Property Protection Or Software
CM-IS Software Developmentand Licensing Contracts
CM-i6 Software Development Using VOM
CM-17 User hiterfac Development'
CM-IS (superseded by CM-231
CM-19 Software Requvements
CM-20 Formal Verification of Programs
CM-21 Software Project Management
CM-22 Software Design Meftods for Real-Trie Systems*
CM-23 Technical Writing lor Software Engineers
CM-24 Concepts of Concurrent Programming
CM-25 Language and System Support for Concurrent

Programming'
CM-26 Understanding Program Dependencies

